

Algorithms

- Actions to be executed
- order in which these actions are to be executed - Pseudocode Example p. 96
- artificicial and informal language similar to English - statements are not executed on computer
used to determine flow of program and reduce logic errors
can be easily converted to programming language used for executable statements

Intiroduction to Control

Structures

Execution of program commands are usually sequential
Transfer of control- allows programmer to guide program execution
Main control structures: sequence structures, selection structures, and repetition structures

- Flowchart- graphical representation of an algorithm or portion
drawn using special symbols

I ntroduction to Control Structures

- Useful for developing and representing algorithms (Figure 4.1, p. 92; Figure 4.2, p. 94)
- Rectangle- action symbol(any type of action)
- Oval- contains Begin, Start, or End

Circle- used when represents only a portion of algorithm (connector symbol)
Diamond- decision symbol

- VB has three types of selection structures: If/Then, If/Then/Else, and Select Case

I ntroduction to Control

Structures

-If/Then- true makes selection or skips
selection (single)
If/Then/Else- true makes selection or false
makes another selection (double)
Select Case- multiple selections

- VB has six types of repetition structures:

While, Do While, Do Until, Do Loop/While, Do
Loop/Until, For/Next

- Keywords: If, Then, Else, While, Do, Until

Introduction to Control

 Structures- Keywords- Loop, Select, Case, For, Next
- VB has ten control structures
- Single-entry/single-exit control structures make it easy to build programs (stacking)
Control structures can be connected by nesting
- Note: any program can be written using ten
control structures and combined in two ways

Introduction to Control Structures

If/Then Selection Structure

- pseudocode- If student,s grade is greater than or equal to 60 Dísplay "Passed"
VB code: If grade $>=60$ Then
lb|Status.Caption = "Passed" End If
Flowchart: Figure 4.2, p. 94
Flowcharts for control structures contain only rectangle symbols indicate actions to be performed
Diamonds indicate decisions to be made

Introduction to Control

 Structures- if grade $>=60$ then
- |b|status, Caption = "Passed"
- else
- Ib|Status. Caption = "Failed"
end if
VB code
Note1: compiler ignores whitespace characters
blanks, tabs, and newline (used for indention and
vertical spacing)
- Note2: use uniform spacing conventions

Introduction to Control

 Structures\square Note3: spanning multiple lines requires End If - exception use of line-continuation character Function II F has three arguments: condition, value returned when True, value returned when False
\square IblStatus. Caption $=\| I F$ (grade $>=60$, "Passed", "Failed")

- Note4: performs same action as If/Then/Else
- Nested If/Then/Else allow multiple case tests

Introduction to Control
 Structures

Function IIf has three arguments:

- condition, value returned when True, value
returned when False
- Ib|Status. Caption $=\| \| f($ grade $>=60$, "Passed", "Failed")
Note1: performs same action as If/Then/Else
- Nested If/Then/Else allow multiple case tests place one within another
Example coding on p. 96
Note2: Elself could be used to simplify coding

Introduction to Control

 Structures- Example of action/decision mode of programming
If/Then/Else Selection Structure:
- If Student's grade is greater than or equal to 60 Display "Passed"
Else
- Display "Failed"
- Pseudocode
Ned If/Then/E

Introduction to Control Structures

- Note4: does not provide Else situation
- value must be paired with conditions

Example: IblStudentGrade.Caption $=$ Switch

- (grade $>=90$, " A ",
- grade >=80, "B",
grade $>=70$, "C",
grade >= 60 , " D^{\prime},,
- grade < 60, "F")
- Note5: similar to If/Then/Else logic not providing condition causes run-time error

Introduction to Control Structures

- Note6: If/Then/Else is also referred to as block - Body of control structure may contain one or more statements
Example: If grade $>=60$ The
|blStatus.Caption = "Passed"
Else
IbIStatus.Caption = "Failed" End If

Introduction to Control Structures

While/Wend Repetition Structure
repetition allows action to be repeated if True or False of some condition
Common error:
not providing an action that will eventually cause a False condition (creates infinite loop)
Example: Dim product As Integer
product = 2
While product $<=1000$
product $=$ product * 2
Wend

Introduction to Control Structures

Do Untill Loop Repetition Structure

- Test condition for False situation
used when situation is better tested in negative situation

Example: Dim product As Integer
product $=2$
Do Until product > 1000
product $=$ product $* 2$

- Loop

Figure 4.6, p. 100

- Same logic as While/Wend

Introduction to Control

Structures

- Ends when product $=1024$
- Can have more than one statement in loop
- Flowchart Figure 4.4, p. 99
\lrcorner Do While/Loop Repetition Structure
Dim product As Integer
product = 2
Do While product <= 1000 product $=$ product * 2
- Loop

Introduction to Control Structures

Formulating Algorithms: Case Study 1
Counter-controlled
Create program that displays in a label up to nine "\#" characters (pseudocode p. 101)
User inputs number (from 1-9) indicating number of "\#" characters to display

- Interface: Figure 4.8, p. 101
- Interface specification: Figure 4.9, p. 102

Code: Figure 4.10, p. 103

Interoduction to Control Structures

Formulating Algorithms with Top-down, Stepwise Refinement
Sentinel-controlled repetition
Develop class averaging program that will process an arbitrary number of grades each
time program is run
Questions:
How will program know when to calculate and display class average?

Introduction to Control

 Structures- How will program know when to stop input of grades?
- Solution- use special value called a sentinel value
signal, dummy, or flag to indicate end of input
- also called indefinite repetition since number of reps is not know before hand
- Note: sentinel value cannot be a valid input value

Example: -1 would be a good sentinel value

Introduction to Control Structures

```
\squarePseudocode: p. 106 (refined version)
\square Interf'ace: F̈gure 4.12, p. 107
Specifications: Figure 4.13, p. 107-108
    Code: Figure 4.14, p. 108-109
Total- variable used to accumulate sum of
series of values
        initialized to zero
~ Counter- variable used to count iterations
    initialized to zero
```


Introduction to Control Structures

- Function $\$ nputBox used to input first grade - Note3: integer division returns a whole number message = message \& Format\$(average,
"Fixed")
concatenates message (Class average is) to formatted average (2 decimal places)
Formulating Algorithms with Top-down, Stepwise Refinement
nested control structures

Introduction to Control

 Structures- Note1; if an accumulator variable is not infitialized to zero
- could contain garbage values when created

Single- handles floating-point numbers

- ! is type declaration
- Note2: in sentinel-controlled loop
prompts requesting data entry should explicitly
state sentinel value
- String-sequence of characters encoded in
double auntes(S_tvne declaration)

Introduction to Control

 StructuresProblem: Write program that draws sequence of \$ characters on form.
The side of square (number of \$ characters to be printed side by side) should be input by user and should be in range 1-12

- Pseudocode for top:
draw square of $\$$ characters on form (complete program)
- 1st refinements:
initialize variables

Introduction to Control Structures

[^0]
Introduction to Control Structures

- Increment row by one

Beep statement- sounds a beep through the computer speaker
Frequency and duration of beep is hardware and system dependent
Note: avoid using more than three levels of nesting

- pseudocode Figure 4.15, p. 113 interface Figure 4.16, p. 113 ;Specs:4.17, p. 114 code:Fiaure 4.18. D. 115

[^0]: - Prompt for the side of square
 - input side of square
 - validate side is within prompt range
 - print sequence

 Initialize variables:
 side to the value input
 row to one
 column to one
 Input side of square (textbox or inputbox)

